Pathophysiology and genetics of cholelithiasis

Karel J. van Erpecum

Dept of Gastroenterology and Hepatology

University Medical Center

Utrecht

The Netherlands

Outline of presentation

Background

- Biochemical aspects: "all you always wanted to ask about gallstone pathogenesis but did not dare to ask"
- Genetics (biliary lipid transport proteins)
- Nuclear receptors

Background

• In Western world:

- 70% cholesterol gallstones and 30% black pigment gallstones
- below age 50 yrs mainly cholesterol stones, increasing relative contribution of pigment stones at increasing age
 main location in gallbladder.
- In Far East:
 - -traditionally high frequency of brown pigment stones in bile ducts
 - -in recent decades shift to cholesterol gallstones, related to western diet

stones Ig relative

oile ducts related to

Risk factors for black pigment gallbladder stones

- Cystic fibrosis
- Hemolytic anemias
- Gilbert syndrome-associated UGT1A1 mutation

Pigment and cholesterol gallstones: ends of a spectrum of one single disease?

- Cholesterol gallstones generally have small amounts of conjugated bilirubin at their center.
- Other factors (e.g. diet, apoE genotype) may determine whether cholesterol or pigment stones develop.
- Gilbert syndrome-associated UGT1A1 mutation is risk factor for both pigment and cholesterol gallstones (Buch et al. Gastroenterology 2010)

Outline of presentation

- Background
- Biochemical aspects: "all you always wanted to ask about gallstone pathogenesis but did not dare to ask"
- Genetics (biliary lipid transport proteins)
- Nuclear receptors

Biliary cholesterol solubilization

- Cholesterol solubilized in mixed micelles by bile salts and phospholipids
- Biliary cholesterol supersaturation (CSI > 1) if excess cholesterol can not be solubilized in mixed micelles (excess cholesterol secretion or diminished bile salt or phospholipid secretion)
- Excess cholesterol solubilized in cholesterol-phospholipid vesicles
- Nucleation of cholesterol crystals if excess cholesterol can not be kept in vesicles

Cholesterol crystallization: on gallstone surface versus in aqueous solution

Cholesterol in supersaturated aqueous solution

Nucleation on stone surface

(gallstone growth)

stones remain small)

Venneman et al. Biochim Biophys Acta 2005;1686:209-219

Nucleation as free cholesterol crystals (microlithiasis, sludge,

Small gallstones in biliary pancreatitis

Venneman et al. Hepatology 2005;41:738-46

Small stone: more often migration to bile duct, especially in case of vigorous gallbladder emptying

Van Erpecum. Best Practice and Research Clinical Gastroenterol 2006

The bile salt –phospholipid-cholesterol phase diagram

Various zones in the bile salt –phospholipid-cholesterol phase diagram

Relative amounts of various lipids determine what happens

More phospholipid compared to bile salt: slower / less crystallization

Relative amount of phospholipid versus bile salt determines speed of cholesterol crystallization

Relative excess phospholipid

ABCB4 deficiency: Low phospholipid associated cholelithiasis (LPAC)

- Mutations of ABCB4 gene encoding the hepatobiliary phosphatidylcholine floppase
- (relative) biliary phospholipid deficiency (?)
- **Clinical**:
- Age at onset of symptoms < 40 years
- Cholesterol gallbladder stones and intrahepatic sludge / microlithiasis (OR 6.1)
- Recurrence of biliary colic after cholecystectomy (OR 8.5)
- Positive family history
- Association with obstetric or mild chronic cholestasis (gGT¹)
- Treatment with ursodeoxycholic acid (?)

Outline of presentation

- Background
- Biochemical aspects: "all you always wanted to ask about gallstone pathogenesis but did not dare to ask"
- <u>Genetics (biliary lipid transport proteins)</u>
- Nuclear receptors

Cholesterol gallstones: environmental factors (75%) versus genetic factors (25%).

- High-caloric, high-carbohydrate diet Leitzmann et al. *Gastroenterology* (2005)
- Low-fiber diet (*Bacteroides* enterotype ?) Tsai et al. *Am J Gastroenterol* (2004)
- Physical inactivity
 Leitzmann et al. N Engl J Med (1999)
- Drugs: estrogen progesteron, octreotide therapy Cirillo et al. JAMA (2005), Liu et al. BMJ (2008)
- Obesity / metabolic syndrome Völzke et al. *Digestion* (2005), Tsai et al. *Gut* (2006)
- Rapid weight loss / surgery for obesity Shiffman et al. Ann Intern Med (1995)
- "Weight cycling" Tsai et al. Arch Intern Med (2006)

Relationship between incidence of gallstones and rate of weight loss in various studies

Weinsier. Am J Med 1995;98:115-7

University Medical Center Utrecht

Main genetic factor: ABCG8 p.D19H

	Year	Population	Ν	OR
Buch et al.	2007	Germany	1,832	2.2
		Chile	167	1.9
Grünhage et al.	2007	Romania	178 (ASP)	3.0
Kuo et al.	2008	Chile	74	3.5
Katsika et al.	2010	Sweden	341	2.5
Siddapuram et al.	2010	India	226	2.3
Stender et al.	2011	Denmark	3,124	1.9

University Medical Center Utrecht

Risk allele frequency (%)
5.0
7.0
8.5
1.4
6.8
8.2
6.4

Krawczyk et al. Semin Liver Dis (2011)

10-year risk of gallstone disease

Stender et al. Heptology (2011)

Effects of ABCG8 variant p.D19H

ABCG8 p.D19H confers

- cholesterol gallstone susceptibility (more biliary secretion?)
- decreased intestinal cholesterol absorption (more transfer from enterocyte back to intestinal lumen?)
- Secondary effects:
- higher hepatic cholesterol neosynthesis
- (lower serum cholesterol levels)
- better response to statins

\Rightarrow ABCG8 p.D19H may represent a gain-of-function mutation that increases clearance of sterols from the body

Teupser et al. Circulation (2010) GWAS N = 4,412

Jakulj et al. J Lipid Res (2010) Meta-anaylsis N = 591

Outline of presentation

- Background
- Biochemical aspects: all you always wanted to ask about gallstone pathogenesis but did not dare to ask
- Genetics (biliary lipid transport proteins)
- <u>Nuclear receptors</u>

Nuclear receptors

- FXR: regulates transport proteins ABCB11 (bile salt transporter) and ABCB4 (phospholipid transporter) at hepatocytic canalicular membrane.
- LXR: regulates cholesterol transporter (ABCG5/G8 at hepatocytic canalicular membrane.

Bile salt nuclear receptor FXR protects against various diseases

Role in Crohn/Colitis?

Prevention against colonic cancer?

Hepatology. 2008 Jun;47(6):2112-26.

Bile salt-FXR-FGF19 axis: master regulator of enterohepatic circulation

Moschetta et al, Gastroenterology. 2012;142:355-365 and Nature Medicine 2006;12,1253-1255

Inhibition pancreatic secretion?

Effects of FXR loss of function variants and FXR agonists on gallstone formation

Moschetta et al. Nature Medicine 2004;10, 1352 - 1358

FXR (-/-) mouse is more susceptible to gallstone formation than wild type mouse on lithogenic die

Moschetta et al. *Nature Medicine* 2004;**10**, 1352 - 1358

FXR agonist prevents gallstones in wildtype but not in FXR (-/-) mouse on lithogenic diet

Moschetta et al. Nature Medicine 2004;10, 1352 - 1358

Conclusions

- Significant progess in understanding pathogenesis of gallstones
- Environmental factors determine 75% of gallstone formation (cave rapid weight loss)
- Genetic factors determine 25% of gallstone formation (ABCG8 cholesterol transporter 11%: UGT1A1 Gilbert variant 6%)
- Mutations in ABCB4 phospholipid transporter can lead to gallstone and liver disease.
- Role nuclear receptors in human gallstone formation to be investigated: possibly therapeutic consequences of synthetic FXR agonists

Acknowledgements

- **Niels Venneman** (University Hospital Utrecht, The Netherlands)
- Antonio Moschetta (Mario Negri Sud, Chieti, Italy)
- Piero Portincasa (University Hospital Bari, Italy).
- Frank Lammert (Saarland University Medical Center, Homburg Germany)
- David Q.H. Wang (St Louis University School of Medicine, USA).
- Martin C. Carey (Brigham and Women's Hospital, Boston USA).
- Bert Groen (AMC, UMCG, Amsterdam and Groningen, The Netherlands)
- Gerard van Berge Henegouwen (University Hospital Utrecht, The Netherlands)

