

Portal vein thrombosis meeting

Paris, 29-30 Nov 2022

Anticoagulation in patients with cirrhosis to prevent and treat portal vein thrombosis and to prevent decompensation

Agustín Albillos Martínez

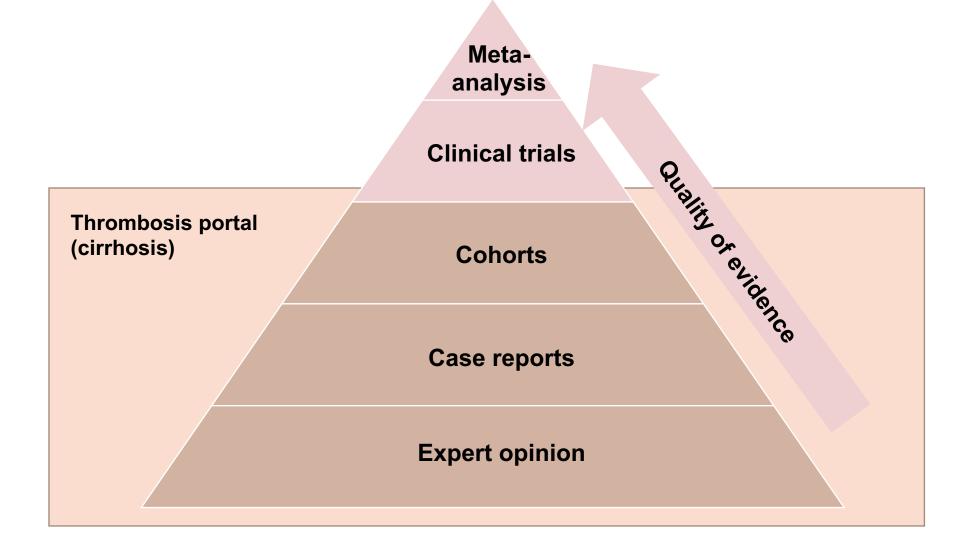
Hospital Universitario Ramón y Cajal Universidad de Alcalá Madrid

Paris, 29-30 Nov 2022

Anticoagulation in patients with cirrhosis to prevent and treat portal vein thrombosis and to prevent decompensation

CONS

- PVT <50%: mostly transient
- Hepatic decompensation and death: independent of PVT
- Definitive risks of AC


PROS

- Benefit of AC in recanalization and progression
- Benefit of AC in outcomes and survival?
- Low risks of AG?

Quality of evidence in portal vein thrombosis in cirrhosis

Anticoagulation in patients with cirrhosis to prevent and treat portal vein thrombosis and to prevent decompensation

Agenda

- Does portal vein thrombosis (PVT) influence meaningful outcomes (decompensation, LTx, death) in cirrhosis?
- Does anticoagulation reverse PVT more often than no treatment?
 Does anticoagulation modify the natural history of cirrhosis?
- Is anticoagulation safe?

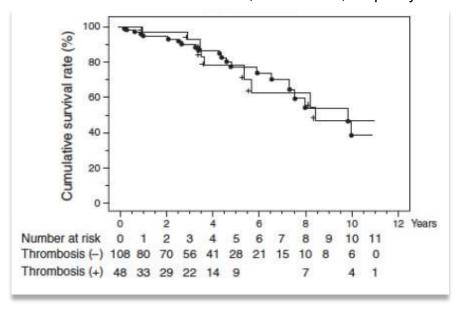
Please address stopping rule, risk of re-thrombosis after anticoagulation withdrawal. Please also address bleeding complications unrelated to portal hypertension, and factors associated with progression and regression of the thrombus under anticoagulation

Impact of portal vein thrombosis on cirrhosis progression and survival

Hepatic decompensation

Longitudinal prospective, 1243 pts, US q. 6 mths **86% non-occlusive**, Child A-B

	Univariate Models Unadjusted Estimates			Multivariate Models Adjusted for the Baseline Prognostic Variables*			
Models		HR	95% CI	P	HR	95% CI	
Liver disease progression							
- Partial PVT	1.58	1.02-2.45	0.04	1.51	0.73-3.14	0.27	
- Partial or Complete PVT	1.48	0.97-2.26	0.067	1.32	0.68-2.55	0.41	
Decompensation							
- Partial PVT	1.77	1.07-2.92	0.027	1.60	0.69-3.74	0.28	
- Partial or Complete PVT	1.61	0.98-2.62	0.058	1.37	0.62-3.03	0.44	


F Nery et al. Hepatology. 2014

Hepatic decompensation and death are **independent** of PVT in <u>prospective</u> observational studies

- US based study, 12-month f-up (2000-2006) (Nery et al.)
- US based study, 29-month f-up (2014-2019) (C Noronha et al. Liv Int 2019)
- CT based study, 24-month f-up (2014-2019) (A Luca et al. Radiology 2012)

Survival

Retrospective, 150 pts viral cirrhosis **72% non-occlusive**, Child A-B-C, F-up 11 yr

H Maruyama et al. AJG 2013

Impact of portal vein thrombosis on acute variceal bleeding

Variable	No PVT	PVT	OR (95% CI)
5-day failure	15%	25 %	3.1 (1.39-6.68)
Hypoxic hepatitis	5.9%	15.5%	2.9 (0.88-9.79)
6-week mortality	13%	36%	3.5 (1.02-11.9)

G D'Amico et al. Hepatology 2003

L Amitrano et al. JCG 2012

S Augustin et al. AJG 2011

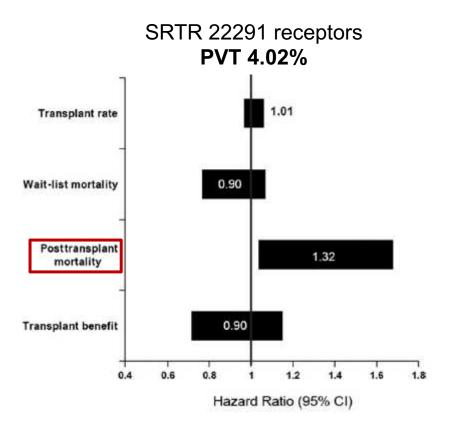
Clinical presentation of portal vein thrombosis in cirrhosis

701 patients admitted

79 patients with PVT (11.9%)

34 asymptomatic (57%)

31 variceal bleeding (39%)


14 abdominal pain (17.7%)

PVT presentation	Asymptomatic	Ischemic	Haemorrhagic	P value
Thrombosis				
Portal trunk				
Absent	5 (15.6)	2 (13.3)	4 (12.5)	0.51
Occlusive	12 (37.5)	9 (60)	11 (34.4)	
Partial	15 (46.9)	4 (26.7)	17 (53.1)	
Right branches				
Absent	18 (56.3)	12 (80)	23 (71.9)	0.51
Occlusive	8 (25)	2 (13.3)	6 (18.8)	
Partial	6 (18.8)	1 (6.7)	3 (9.4)	
Left branches		1001000000		
Absent	23 (71.9)	12 (80)	26 (81.3)	0.87
Occlusive	7 (21.4)	3 (20)	5 (15.6)	
Partial	2 (6.3)	0 (0)	1 (3.1)	
Mesenteric				
Absent	25 (78.1)	4 (26.7)	24 (75)	0.0001
Occlusive	0 (0)	11 (73.3)	0 (0)	
Partial	7 (21.9)	0 (0)	8 (25)	
Splenic				
Absent	27 (84.4)	12 (80)	29 (90.6)	0.25
Occlusive	2 (6.3)	3 (20)	1 (3.1)	
Partial	3 (9.4)	0 (0)	2 (6.3)	

Impact of portal vein thrombosis on liver transplantation

30-day post-transplantation survival

	Complete	PVT	Partial	PVT		Odds ratio	Odds ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
Davidson 1994	5	41	1	50	22.5%	6.81 [0.76, 60.79]	
Egawa 2006	6	10	5	29	42.6%	7.20 [1.47, 35.32]	(-
Manzanet 2011	2	14	2	48	25.4%	3.83 [0.49, 30.09]	020
Ravaioli 2011	1	7	0	7	9.5%	3.46 [0.12, 100.51]	
Total (95% CI)		72		134	100.0%	5.65 [2.00, 15.96]	()
Total events	14		8				
Heterogeneity: Tau2 =	= 0.00; Chi²	= 0.33,	df = 3(P =	0.95);	$I^2 = 0\%$		0.004 04 4000
Test for overall effect	Z = 3.27 (P	= 0.001	1)				0.001 0.1 16 1000 Partial PVT Complete PVT

1-year post-transplantation survival

	Complete	PVT	Partial	PVT		Odds ratio		Odds ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	Year	M-H, Random, 95% Cl
Suarez 2010	9	20	5	28	48.7%	3.76 [1.02, 13.92]	2010	
Manzanet 2011	5	14	12	48	51.3%	1.67 [0.47, 5.96]	2011	
Total (95% CI)		34		76	100.0%	2.48 [0.99, 6.17]		
Total events	14		17					
Heterogeneity: Tau ² =	= 0.00; Chi²	= 0.76,	df=1(P=	0.38);	$l^2 = 0\%$		ţ.	04 04 40 400
Test for overall effect							U	.01 0.1 10 186 Partial PVT Complete PVT

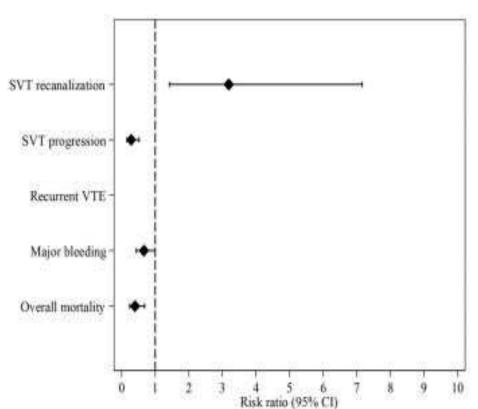
Anticoagulation in patients with cirrhosis to prevent and treat portal vein thrombosis and to prevent decompensation

Universidad de Alcalá

- Does portal vein thrombosis (PVT) influence meaningful outcomes (decompensation, LTx, death) in cirrhosis?
- Does anticoagulation reverse PVT more often than no treatment?
 Does anticoagulation modify the natural history of cirrhosis?
- Is anticoagulation safe?

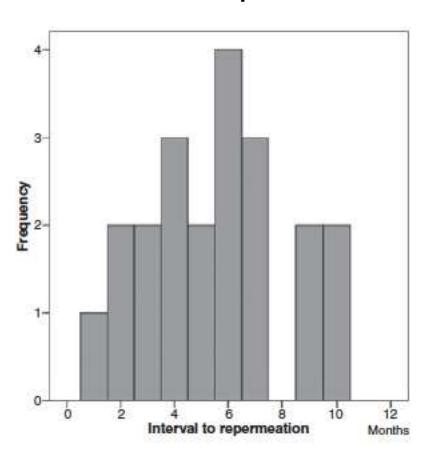
Series of anticoagulation for portal vein thrombosis in cirrhosis

DIGESTIVO RAMON Y CAJAL MADRID



Author	Study type	Patients	Anticoagulation	Duration (months)	Recanalization (months)
Francoz, 2005	Prospective	19	LMWH→VKA	8	CR 42%
Delgado, 2012	Retrospective	55	LMWH, LMWH→VKA, VKA	7	CR/PR 60%
Cui, 2015	Prospective	65	LMWH	6	CR/PR 78%
Chen, 2016	Retrospective	30	VKA	8	CR/PR 68%
Wang, 2916	Prospective	31	VKA	12	CR/PR 100%
Hanafy, 2018	Prospective	80	VKA, rivaroxaban	6	CR/PR 45, 85%
Artaza, 2018	Retrospective	32	LMWH, VKA	13	CR 53%, PR 19%
Pettinary, 2018	Retrospective	81	LMWH, VKA	12	CR/PR 57%
Scheiner, 2018	Retrospective	22	LMWH→VKA	12	-
Ferreira, 2019	Retrospective	37	LMWH, VKA	25	CR/PR 58%
Naymagon, 2020	Retrospective	60	LMWH, VKA, DOAC	19	CR 38, 58, 55%
Florescu, 2021	Retro- prospective	54	LMWH, LMWH→VKA	-	CR/PR 55%

Meta-analysis of <u>aggregate</u> data 26 studies, 1475 patients, -2019

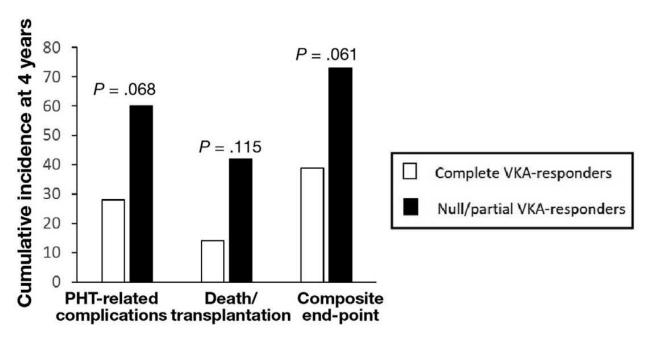


Outcome	Anticoagulated: events (n/N, %)	Untreated: events (n/N, %)	Studies (n)	I ² (%)	RR (95% CI)
SVT recanalization	195/305 (63.9%)	79/282 (28.0%)	9	80	3.19 (1.42-7,17)
SVT progression	16/224 (7.1%)	44/181 (24.3%)	8	0	0.28 (0.15-0.52)
Recurrent VTE	8/92 (8.7%)	10/57 (17.5%)	1	S2	S
Major bleeding	14/218 (6,4%)	20/179 (11.2%)	6	0	0.52 (0.28-0.97)
Overall mortality	21/230 (9.1%)	39/186 (21.0%)	6	0	0.42 (0.24-0.73)

Anticoagulant for portal vein thrombosis in cirrhosis: Interval to repermeation

Interval to repermeation

M Senzolo et al. Liver Int 2012


182 patients with cirrhosis and PVT, 2008-201681 on anticoagulation, 101 untreatedInterval to repermeation:

61% at **3 m**, 28% at **6-12 m**, 11% after 12 m

Anticoagulation for portal vein thrombosis in cirrhosis Relationship between recanalization and outcomes

Multicentre, Italy 2003-2015, n=63 PVT LMWH → VKA (ptl >30k/µl)

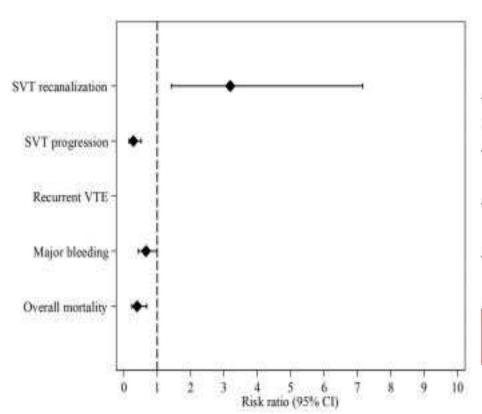
Recurrence of PVT after recanalization and stopping anticoagulation:

Meta-analysis of 9 studies

Pooled rate **46.7%** (95% CI 37.7–69.3%)

I2 = 36%; P = 0.1306

Le Wang et al. Adv Ther 2021


Author	Number of patients*	Recurrence (%)	Mean time (months)
Delgado, CGH 2018	13	5 18%	1.3
Pettinary, AJG 2018	46	7 36 %	-
Naymagon, DDS 2020	24	7 29 %	9.2

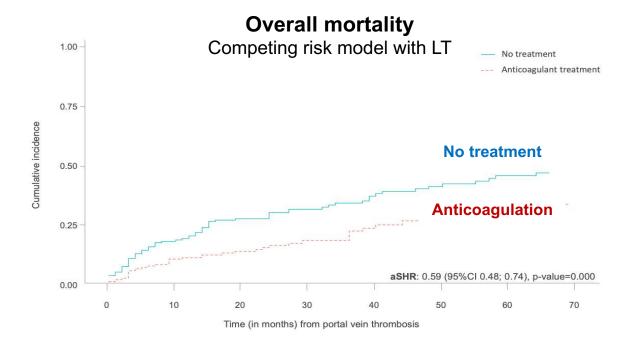
^{*} AC&recanalization → AC discontinued

Meta-analysis of <u>aggregate</u> data 26 studies, 1475 patients, -2019

Outcome	Anticoagulated: events (n/N, %)	Untreated: events (n/N, %)	Studies (n)	I ² (%)	RR (95% CI)
SVT recanalization	195/305 (63.9%)	79/282 (28.0%)	9	80	3.19 (1.42-7,17)
SVT progression	16/224 (7.1%)	44/181 (24.3%)	8	0	0.28 (0.15-0.52)
Recurrent VTE	8/92 (8.7%)	10/57 (17.5%)	1	3	is .
Major bleeding	14/218 (6,4%)	20/179 (11.2%)	6	0	0.52 (0.28-0.97)
Overall mortality	21/230 (9.1%)	39/186 (21.0%)	6	0	0.42 (0.24-0.73)

Anticoagulation in patients with cirrhosis to prevent and treat portal vein thrombosis and to prevent decompensation

Agenda


- Does portal vein thrombosis (PVT) influence meaningful outcomes (decompensation, LTx, death) in cirrhosis?
- Does anticoagulation reverse PVT more often than no treatment?
 Does anticoagulation modify the natural history of cirrhosis?
- Is anticoagulation safe?

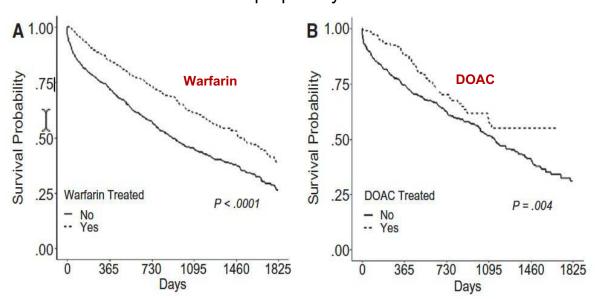
Decreased overall mortality in patients anticoagulated for portal vein thrombosis in cirrhosis

IPD meta-analysis

Studies comparing AC vs. no treatment cohorts
5 studies, 500 patients, Until JUN-2020
Child B/C 68/49%%, Non-occlusive PVT 37/41%
AC (median): LMWH, VKA 9.1 m. F-up (median): 26 m

Anticoagulation reduces all-cause mortality and hepatic decompensation in patients with Child A/B cirrhosis and atrial fibrillation

Retrospective longitudinal study, US Veterans data

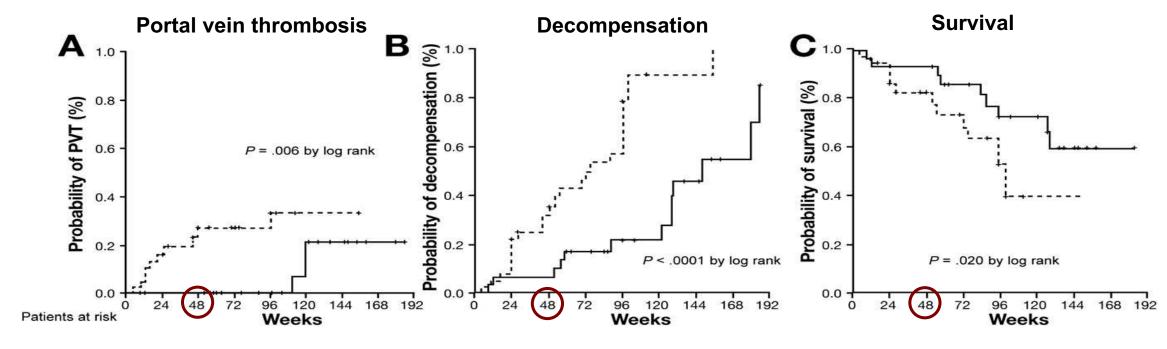

Cirrhosis with incidental atrial fibrillation

1694 controls, 614 warfarin, 704 DOAC

Child A/B (%): warfarin 70/30, DOAC 90/10
4.6 yr f-up

Survival probability

KM curve in a propensity-matched cohort


Incidence rates per 100 person-years

	Warfari	in-Matched Coh	DOAC-N	latched Cohor	t	
	No AC n = 1,080	Warfarin $n = 614$	PValue	No AC n = 503	DOACs n = 201	PValue
All-cause mortality	27.2	17.0	<0.001	23.1	16.1	<0.01
HD	7.1	5.3	0.02	6.3	4.6	0.14
Death after hepatic decompensation	12.4	7.6	<0.001	6.7	4	0.12
Ischemic stroke	1.7	2.3	0.11	2.0	1.3	0.18
MACE	3.8	3.4	0.21	3.5	3.2	0.36
Splanchnic thrombosis	0.5	0.3	0.05	0.5	0.3	0.27
Bleeding	5.4	5.9	0.29	4.8	3.6	0.21

Enoxaparin prevents portal vein thrombosis and liver decompensation in advanced cirrhosis

70 patients with **Child B7-C10** cirrhosis **Enoxaparin** 4000 U (**40 mg**)/24 h sc for 48 wks *vs.* **No treatment**

Independent risk factors (HR, Cox) of ...

↓	portal	vein	thrombosis	(HR)
---	--------	------	------------	------

Enoxaparin treatment 0.009

Protein C levels 0.98

... ↓ decompensation (HR)

Enoxaparin treatment 0.33

Baseline bilirubin 1.47

Portal vein diameter 1.21

Encephalopathy 3.19

... Survival (HR)

Enoxaparin treatment 0.36

Portal vein diameter 1.34

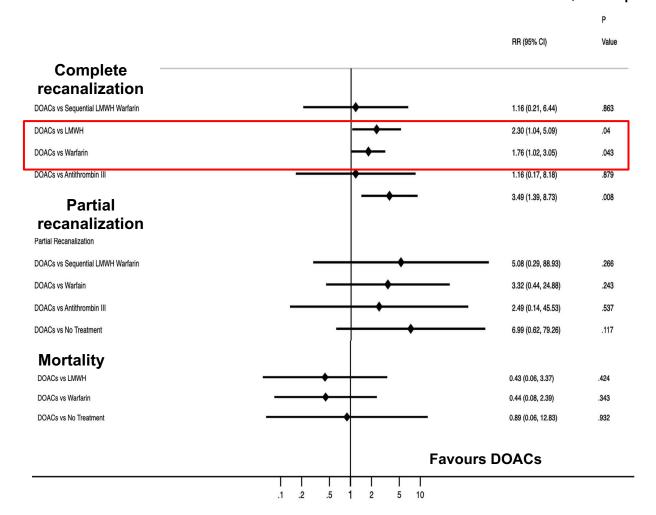
Anticoagulation in patients with cirrhosis to prevent and treat portal vein thrombosis and to prevent decompensation

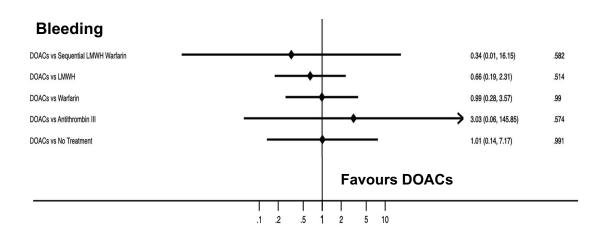
Agenda

- Does portal vein thrombosis (PVT) influence meaningful outcomes (decompensation, LTx, death) in cirrhosis?
- Does anticoagulation reverse PVT more often than no treatment?
 Does anticoagulation modify the natural history of cirrhosis?
- Is anticoagulation safe?

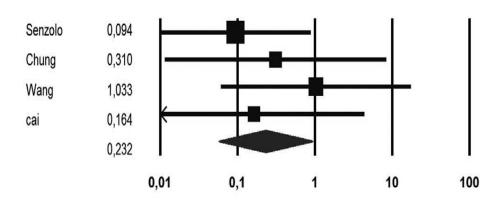
Efficacy of LMWH and VKA for portal vein thrombosis in cirrhosis

Aggregate data meta-analysis 8 studies, **353 patients**, until FEB-2017


	Complete F	Recanalization o	Progression of PVT				
Study-Level Factors	Pooled OR Over Subgroup	OR Over		Pooled OR Over Subgroup	95% CI	P	- 44
Duration of anticoagulation (per mo) Type of anticoagulation	0.872	0.661-1.152	.389	1.100	0.826-1.467	.550	
LMWH (vs untreated)	8.386	3.287-21.393	.011	0.062	0.040-0.097	< 001	
Warfarin (vs untreated)	2.232	0.742-6.720	226	0.338	0.238-0.479	.004	
Warfarin (vs LMWH)	0.266	0.062-1.131	.147	5.446	3.089-9.960	.004	
Warfarin (vs LMWH), adjusted by study design Study design	0.057	0.002-1.651	.194	2.060	0.749-5.664	.256	
R (vs P)	0.420	0.075-2.349	.379	5.890	3.642-9.526	.002	



Network meta-analysis 10 studies, 527 patients, JUN-2020



Variceal bleeding

(4 studies, 158 patients)

Favours anticoagulant treatment Favours no treatment

OR 0.23 (0.05, 0.93) Treated vs untreated 2 vs. 12%

Any bleeding

(6 studies, 257 patients)

Treated vs untreated 11 vs. 11%

	Variceal Bleeding						
Study-Level Factors	Pooled OR Over Subgroup	95% CI	Ρ				
Duration of	1.264	0.986-1.620	206				
anticoagulation (per mo) Type of anticoagulation							
LMWH (vs untreated)	0.103	0.040-0.264	.041				
Warfarin (vs untreated)	0.713	0.318-1.600	499				
Warfarin (vs LMWH)	6.925	2.002-23.952	.0924				
Warfarin (vs LMWH), adjusted by study design Study design	4.368	0.158-119.78	.545				
R (vs P)	6.476	1284-32.661	.152				

IPD meta-analysis

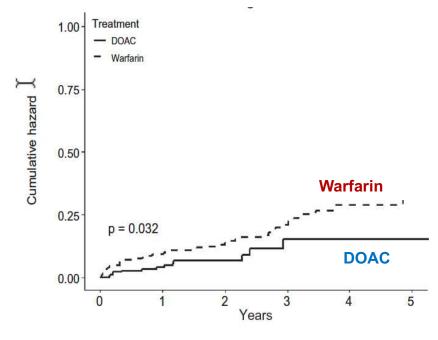
Studies comparing AC vs. no treatment cohorts

5 studies, **500 patients**, Until JUN-2020

AC: LMWH, VKA. Child B/C 62%. AC (median): 9.1 m. F-up (median): 26 m

Bleeding events	Anticoagulation n=205	No treatment n=295	Р
Global, N (%)	39 (19.0%)	46 (15.6%)	0.3
Portal hypertension related, N (%)	19 (9.3%)	41 (13.9%)	0.1
Non-portal hypertension related, N (%)	20 (10%)	5 (1.7%)	0.1
Intracraneal hemorrhage	1		
GI bleeding Epistaxis, gingivorrhagia Abdominal hematoma for injection Other	6 5 3 6	4	

Retrospective longitudinal study US Veterans data Cirrhosis with incidental atrial fibrillation 1694 controls, 614 warfarin, 704 DOAC


Child A/B (%): warfarin 70/30, DOAC 90/10 4.6 yr f-up

	Bleeding								
	Wa	rfarin vs. No AC	DOAC vs. No AC						
Model Specification	n	HR (95% CI)	n	HR (95% CI)					
ITT PS-matched cohorts	1,694	(1.10-2.06)		0.77 (0.40-1.48)					
Marginal structural models [†]	2,694	1.29 (0.74-2.26)		0.37 (0.13-1.07)					

	Warfo	arin- <mark>Matched Cohort</mark>	DOAC-Matched Cohort			
	No AC n = 1,080	Warfarin n = 614	PValue	No AC n = 503	DOACs n = 201	PValue
Bleeding	5.4	5.9	0.29	4.8	3.6	0.21

Bleedings: ~88% GI in both groups

Cumulative risk of bleeding

Bleeding events in patients with cirrhosis and atrial fibrillation treated with VKA or DOACs

Agregate data meta-analysis

Studies comparing DOAC vs. traditional AC

Child A/B cirrhosis with atrial fibrillation

7 studies, 683 patients, ISTH definitions

ISTH-Major bleeding

	DOA	C	Traditio	onal		Odds Ratio			Odds	Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	Year	•	M-H, Rand	om, 95% CI	
Intagliata 2016	1	20	2	19	7.3%	0.45 [0.04, 5.39]	2016				
Hum 2017	1	27	5	18	8.9%	0.10 [0.01, 0.95]	2017				
Goriacko 2018	4	75	11	158	32.5%	0.75 [0.23, 2.45]	2018		-		
Davis 2020	3	57	10	110	25.5%	0.56 [0.15, 2.10]	2020				
Jones 2020	1	42	2	37	7.6%	0.43 [0.04, 4.91]	2020	-	•	_	
Naymagon 2020	3	18	5	26	18.2%	0.84 [0.17, 4.07]	2020			*	
Total (95% CI)		239		368	100.0%	0.55 [0.28, 1.07]			•		
Total events	13		35								
Heterogeneity: Tau²=	0.00; Ch	i²= 2.8	4, df = 5 (P = 0.7:	2); I² = 0%	b		0.01 0.1		10	100
Test for overall effect	Z=1.76	(P = 0.0	18)					0.01 0.1	Favours [DOAC]	Favours [Traditional]	100

Intracraneal hemorrhage

	DOA	C	Traditio	onal		Odds Ratio		Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	Year	ar M-H, Random, 95% CI
Intagliata 2016	1	20	1	19	27.9%	0.95 [0.06, 16.31]	2016	6
Hum 2017	0	27	3	18	25.5%	0.08 [0.00, 1.66]	2017	7 +
Goriacko 2018	1	75	0	158	23.4%	6.38 [0.26, 158.54]	2018	8
Jones 2020	0	42	1	37	23.2%	0.29 [0.01, 7.24]	2020	20 <u> </u>
Total (95% CI)		164		232	100.0%	0.60 [0.10, 3.59]		
Total events	2		5					
Heterogeneity: Tau ² =	= 0.89; Ch	i²= 4.0	9, df = 3 (P = 0.2	5); I² = 27	%		
Test for overall effect								0.01 0.1 1 1 10 100 Favours [DOAC] Favours [Traditional]

All bleeding

	DOA	C	Traditi	onal		Odds Ratio				Odds	Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	Year			M-H, Rand	om, 95% CI	
Intagliata 2016	4	20	3	19	8.5%	1.33 [0.26, 6.94]	2016				•	
Hum 2017	8	27	10	18	15.0%	0.34 [0.10, 1.17]	2017		_	•	-	
Goriacko 2018	10	75	25	158	37.2%	0.82 [0.37, 1.81]	2018			-	_	
Jones 2020	7	42	8	37	18.3%	0.72 [0.23, 2.24]	2020			-		
Davis 2020	5	57	17	110	21.0%	0.53 [0.18, 1.51]	2020			-		
Total (95% CI)		221		342	100.0%	0.67 [0.41, 1.08]				•		
Total events	34		63									
Heterogeneity: Tau ² =	0.00; Ch	i²= 2.3	1, df = 4 (P = 0.6	B); P= 0%)		0.04	0.4		40	400
Test for overall effect:								0.01	0.1	Favours [DOAc]	10 Favours [Traditional]	100

GI bleeding

	DOA	.C	Traditio	onal		Odds Ratio			Odds Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	Year		M-H, Random, 95% Cl	
Intagliata 2016	1	20	1	19	9.5%	0.95 [0.06, 16.31]	2016			
Hum 2017	5	27	4	18	21.3%	0.80 [0.18, 3.48]	2017			
Goriacko 2018	9	75	18	158	30.6%	1.06 [0.45, 2.49]	2018			
Hanafy 2019	0	40	17	40	9.4%	0.02 [0.00, 0.29]	2019			
Jones 2020	1	42	1	37	9.7%	0.88 [0.05, 14.55]	2020		•	
Davis 2020	2	57	7	110	19.6%	0.54 [0.11, 2.66]	2020		-	
Total (95% CI)		261		382	100.0%	0.57 [0.21, 1.57]			•	
Total events	18		48							
Heterogeneity: Tau ² =	0.67; Ch	j²= 9.4	0, df = 5 (P = 0.0	9); l² = 47°	%		0.01	0.1 1 10	100
Test for overall effect	Z=1.09	(P = 0.2	28)					0.01	Favours [DOAC] Favours [Traditional]	100

Portal vein thrombosis meeting Paris, 29-30 Nov 2022

Anticoagulation in patients with cirrhosis to prevent and treat portal vein thrombosis and to prevent decompensation

Take-home messages

Type, dosing and bleeding risk

- Recanalization: LMWH>VKA, 6-9 months. Progression ~7%: LMWH=VKA
- VKA risk increases in ↑creatinine, ↓albumin, platelet <30-50k/µl
- Enoxaparin 1-1.5 mg/kg.d SC, no monitoring. VKA INR 2-3
- Similar efficacy of LMWH→VKA, LMWH, VKA, DOACs
- Similar (or lower) bleeding risk with DOACs than with traditional AC in Child A/B

Portal vein thrombosis meeting Paris, 29-30 Nov 2022

Take-home messages

Aims of anticoagulation

- Achieve recanalization
- Halt progression
- Avoid recurrence
- Reduce hepatic decompensation and mortality?

Considerations for anticoagulation

Individualize indication, no firm recommendations: (→ favours anticoagulation)

- LTx status (→ candidate/waiting LT independent of extension/severity, prevent extension, keep SMV permeability!)
- Symptoms (→ symptomatic)
- Acuity (→ acute/recent, <6 m, no cavernoma)
- Severity/extension (→ occlusive >50%, progression)
- Site (→ main trunk, SMV)

Individualize stopping AC: (→ favours maintaining anticoagulation)

- Maintain until recanalization or for at least 6-9 months if no recanalization
- Continued after recanalization (→ candidate/waiting LT, symptomatic, recurrent, others?)

Portal vein thrombosis meeting Paris, 29-30 Nov 2022

Anticoagulation in patients with cirrhosis to prevent and treat portal vein thrombosis and to prevent decompensation

Take-home messages

- Potential benefit of long-term anticoagulation on hepatic decompensation and survival in cirrhosis
- Portal vein thrombosis might identify a subset of patients with cirrhosis that could benefit of long-term anticoagulation
- The benefit on liver outcomes and survival seems to be independent of the type of anticoagulant, traditional or DOAC