

PARIS PORTAL VEIN THROMBOSIS MEETING

WHEN AND HOW TO TREAT PVT IN A PATIENT WITH SIMULTANEOUS HCC (EXCLUDING PV INVASION)

Marco Senzolo

Gastroenterology, Multivisceral Transplant Unit University-Hospital of Padua, Italy

OUTLINE

- About 15% of patients with cancer will experience VTE RR 15
- Prevalence of cancer in VTE patients is about 7%
- Incidence is increasing over time due to the improved survival and the use of targeted anti-cancer therapies (i.e. immune checkpoint inhibitors)
- Heterogeneity across various ethnic populations
- CAT mortality 1.9 per 100 pts-year (higher in recurrent VTE) low CAT related mortality

CAT (PVT) in Cirrhosis with HCC: Highly Overlooked!

Distinguish Portal Vein Tumor Invasion (PVTT) – LI-RADS

- Imaging features that suggest tumor in vein but do NOT establish its presence are listed below:
 - Occluded vein with ill-defined walls
 - Occluded vein with restricted diffusion
 - Occluded or obscured vein in contiguity with malignant parenchymal mass
 - Heterogeneous vein enhancement not attributable to artifact
 - Unequivocal enhancing soft tissue in vein, regardless of visualization of parenchymal mass

Distinguish Portal Vein Tumor Invasion (PVTT) – LI-RADS

LR-TIV

If contiguous with LR-5	→ "Definitely due to HCC"
If contiguous with LR-4 ————————————————————————————————————	→ "Probably due to HCC"
If associated with infiltrative mass ———	→ "Probably due to HCC"
If contiguous with targetoid mass ———	"May be due to non-HCC malignancy"
Otherwise —	➤ "Etiology uncertain"

Distinguish Portal Vein Tumor Invasion (PVTT) – AVENA Criteria

- Thrombus enhancement
- Venous expansion
- Neovascularity
- Being adjacent to HCC or prior treatment site
- (AFP) >1000 ng/dL

≥3 criteria best characterized tumor PVT100% sensitivity, 93.6% specificity80% PPV, and 100% NPV

1%-3% incidence of local venous thrombosis

Spontaneous amelioration/repermeation in 70%

Prevalence of Non-neoplastic Portal Vein Thrombosis in HCC

- HCC awaiting LT (**12%**) AVENA
- HCC versus non-HCC LT patients (**27%** vs 9%)
- HCC versus non-HCC LT patients (**34.8%** vs 11.4%)
- HCC versus non-HCC LT patients (**40%** vs 30%)
- HCC awaiting locoregional treatment concomitant diagnosis (**12%**)

Nonami, Hepatology 1992; Davidson, Transplantation 1994; Ravaioli Ann Surg 2011; Sherman, Liver Transplant 2019; Grasso, DLD 2021

Incidence of Non-neoplastic Portal Vein Thrombosis in HCC

Number of PVT during follow-up

Child Class (n)		PVT/cirrhotics with HCC	PVT/cirrhotics without HCC	Total
Α	29	5/20 [25%]	0/9 [0%]	5/29 [17.2%]
В	29	3/12 [25%]	1/17 [5.9%]	4/29 [13.8%]
С	18	2/9 [22.2%]	3/9 [33.3%]	5/18 [27.8%]
Total	76	10/41 [24.4%]	4/35 [11.4%]	14/76 [18.4%]

Incidence of Non-neoplastic Portal Vein Thrombosis in HCC

- 623 retrospective patients with CLD non electively admitted to a specialist ICU
- VTE occurred in 125 (20%) patients 80 previous diagnosis
- 39 pts < 48h (80% PVT); 45 pts > 48h (55% PVT)
- Previous and >48h VTE (HCC 30% vs 9%)
- Later > 48h VTE diagnosis (HCC 22% vs 12%)
- At multivariate analysis HCC remains a risk factor OR 2.79

Tumour-related pro-thrombotic changes

Platelets' activation in HCC

Alkozai, Thrombosis Research 2015

Platelets' aggregation in HCC

^{*}ADP-induced aggregation

Thrombin Generation in HCC

ETP without TM

ETP with TM

ETP ratio

Fibrinolysis in HCC

Plasmin-antiplasmin complex

Fibrinogen and HCC

	HCC+PVT	HCC	р
MCF FIB TEM (mm)	23,71±12,82	16,30±7,08	0,047
AUC FIB TEM (mm)	2359±1272,62	1535±640,20	0,022
Fibrinogen (mg/dL)	362±160,44	282,81±115,49	0,04

Zanetto, Liv Int 2017

Risk factors for PVT in HCC

Senzolo et al. manuscript in preparation

PVT extension

	Partial	Complete	Total
MPV only	20	4	24
MPV + IHB	8	3	11
MPV + SMV	17	2	19
MPV + IHB + SMV	4	5	9
MPV + SMV + SV	4	0	4
MPV + IHB + SMV + SV	4	1	5
MPV + IHB + SV	1	0	1
IHB only	11	4	15
Total	69	19	88

Risk factors for PVT in HCC

	PVT number = 88	No PVT number = 662	р		
Age - median (q ₃ -q ₁)	64 (59-69)	67 (59-73)	NS		
Gender Female - number (%)	12 (14)	100 (15)	NS		
Etiology of I [.] number (%): Viral/Alcoholic/M	<u>Multivariate analysis</u>				
Child-Pugh sco	TTV (OR 1.2, p<.0001)				
A/B/C	CSPH (OR 2.9, p=.007)				
MELD - median					
Clinically significant portal hypertesion - number (%)	78 (89)	352 (53)	< .0001		
Total tumor volume (cm ³) - median (q ₁ -q ₃)	16 (5.6-44)	9.2 (4.2-22.9)	.002		
AFP (ng/ml) - median (q ₁ -q ₃)	16.3 (5.9-275.3)	5.9 (3.3-18.2)	.058		

Natural history of non-neoplastic Portal Vein Thrombosis in HCC

Natural history of untreated PVT in HCC

Survival analysis – PVT evolution

	1.00			PVT P/A vs no PVT C/P vs no	PVT: p = 0.503 PVT: p < 0.001
		<u>M</u>	lultivariate a	analysis	
	Complete/p	orogressive PVT	vs no PVT (H	R 3.41, 95%CI 2.46-4	.71, p= <.0001)
	Child	-Pugh score B/C	vs A (HR 1.89,	95%CI 1.47-2.43, p=	<.0001)
		AFP (HR	1.24, 95%Cl 1. ⁻	1-1.39, p= <.0001)	
	TT	V at PVT diagno	osis (HR 1.14, 9	5%CI 1.09-1.2, p= <.	0001)
Number at ris	Number o	f nodules at PV	Γ diagnosis (HR	1.23, 95%CI 1.1-1.3	9, p= <.0001)
No PVT:					
PVT Partial/Ar	meliorated:	65	26	13	2
PVT Complete	e/Progressive:	37	24	13	4

Cumulative HCC and non-HCC related mortality – PVT evolution

Thromboprophylaxys of Cancer Associated Thrombosis (CAT)- non cirrhosis

- Extending post-surgical prophylaxis to up to 4 weeks in patients who have undergone high-risk abdominal or pelvic surgery, again on the basis of randomized trials
- In in-patients, Khorana score of ≥2 is predictive of VTE
- Initial studies addressing this issue used LMWH in a population of patients with various solid tumours but without risk stratification
- The CASSINI and AVERT trials led to guideline recommendations, with consideration of primary outpatient prophylaxis with low dose rivaroxaban, apixaban

Khorana score	Patient characteristics		
	Site of cancer	Very high risk (stomach and pancreas cancers)	2
		High risk (lung, lymphoma, gynaecological, bladder and testicular cancers)	1
	Pre-chemotherapy platelet count ≥350×10 ⁹ /l		
	Haemoglobin level <10 mg/ml or use of red blood cell growth factors		
	Pre-chemotherapy leukocyte count >11×10 ⁹ /l		
	BMI≥35 kg/m ²		

Thromboprophylaxys for HCC associated non-neoplastic PVT ?

Senzolo, J Hepatol 2021

American Society of Hematology 2021 guidelines for management of VTE : prevention and treatment in patients with cancer

RECOMMENDATION 28. For patients with cancer and visceral/ splanchnic vein thrombosis, the ASH guideline panel *suggests* treating with short-term anticoagulation or observing (conditional recommendation, very low certainty in the evidence of effects $\oplus \bigcirc \bigcirc \bigcirc$).

CONSIDERATIONS IN CAT (PVT) IN CIRRHOSIS

Progression of PVT seems to be higher than without HCC

HCC persistence/recidivism influence progression of PVT without AC

PVT could influence the natural history of the liver/HCC disease

Consideration for early treatment in all PVT with full AC dose

Caution with the risk of drugs interaction with AC

	Anticoagulant Target	Protein Binding	Metabolism	Efflux Protein	Inducer/inhibito r of CYP/P-gp
LMWH	AntiXa/Antilla	-	Desulfation and depolymerisation	-	No
Rivaroxaban	AntiXa	95%	CYP3A4/3A5/2J2	P-gp, BCRP	No
Apixaban	AntiXa	87%	CYP3A4/3A5	P-gp, BCRP	No
Edoxaban	AntiXa	42-59%	CYP3A4	P-gp, BCRP	No

Bleeding risk with AC during concomitant TKI therapy

Algorythm of AC for Cancer Associated Thrombosis (CAT)

Lyman, G. H, Blood Adv 2021

Proposed Algorythm of AC for PVT in HCC

- HCC appears to be an independent risk factor for the occurrence of PVT in patients with cirrhosis correlated with its biological activity important distinguish PVTT and associated treatment thrombosis
- PVT in HCC patients seems to have a different natural history and influence in survival compared to non-HCC cirrhotics
- Anticoagulation should be promptly considered in all patients
- Type of anticoagulation could be evaluated on the basis of liver function, risk of GI bleeding and concomitant anti-neoplastic drugs, preferring DOACs when possible
- Future study should aim to evaluate thromboprophylaxis in high-risk patients

ACKNOWLEDGMENTS

Prof Paolo Simioni

General Internal Medicine and Thrombotic and Hemorrhagic Diseases Unit, -

Thrombophlia Lab, University Hospital of Padua

Dr Sarah Shalaby

Multivisceral Transplant Unit - Gastroenterology,

University-Hospital of Padua

Dr Marco Grasso

Multivisceral Transplant Unit - Gastroenterology,

University-Hospital of Padua

University-Hospital of Padua, Italy